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Odd potentials in supersymmetric quantum mechanics 
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Observatoire de Nice, BP 139, Nice Cedex, France 

Received 23 April 1990 

Abstract. We investigate the case of odd potentials for which supersymmetry is broken. I t  
is, however, always possible to construct a representation which includes a non-degenerate 
zero-energy ground state. This method provides a convenient means to generate a wide 
variety of physical situations which are related to supersymmetry. 

It is well known that supersymmetry is broken if there exists no zero-energy ground 
state or there is degeneracy of this ground state (Witten 1981, Gedenshtein and Krive 
1985, Berstein and Brown 1983, Jaffe et a1 1987). For the simplest case of a two- 
component theory 41,  & in one-dimensional space, this problem can be analysed with 
the following system of two coupled differential equations of first order (Salomonson 
and Van Holten 1982, Cooper and Freedman 1983): 

where U' = du/dx, v ( x )  is the superpotential which we assume to be of the Witten form 
( u ( x )  -* 00 as 1x1 -* 00) and E is the energy. 

For zero energy ( E  =O), this system becomes uncoupled and the breaking of 
symmetry will depend on the behaviour of this potential at infinity, that is to say, it 
must be an asymptotically even function of x ( u ( x )  = U ( - x )  as x + *a). 

On the other hand, asymptotically odd potentials ( v ( x )  = -U( -x) as 1x1 + 00) which 
lead to the breaking of symmetry are usually ignored in conventional theories, mostly 
because of the lack of normalisibility of both components r+l , 42. This exclusion is, 
however, not necessary as can be seen below where the proof of the following statement 
is given. 

Statement. For asymptotically odd potentials, it is always possible to construct a 
representation which includes a non-degenerate zero-energy ground state. 

A number of examples and applications will be discussed as illustrations and 
consequences of this statement. 

t Permanent address: 01 Parvis de Breuil, 92160 Antony, France. 

0305-4470/90/ 130659+ 05S03.50 @ 1990 IOP Publishing Ltd L659 



L660 Letter to the Editor 

Boo$ Let the new representation (t,bl, q2) be related to the former one (4', ~ 7 5 ~ )  by 

* =  T4 (2) 
where the 2 x 2  transformation matrix T is 

T=( '  0 c-l O )  (3)  

c = c(x) being assumed to be an analytical function of x. Note that the inverse T-' of 
T is simply 

and det I TI = 1. 
We then have: 

or more explicitly 

[ 2- 6.1 4' = -c2(2E)"2*2 

[,", I c 

1 -+ 5l 42 = +T (2E)'12+, 

in which 

d 
dx  

B ' =  U'+- log c(x). 

(4) 

For E = 0 ,  the RHS is zero. As u(x) is assumed odd, and as the two components 4, ,  
42 are not determined in this case, we have to choose c(x) such that at least one of 
the two components I/J~ is normalisable. Many choices are obviously possible but 
for the moment we shall consider the simplest one 

c(x) =exp(-u(x)+ u2(x)) (6) 
that is to say, V = + u 2 .  The asymptotic forms of 
normalisable but not 
that - e*' as expected. 

are then ~ , $ ~ , ~ = e * ' ~ ,  i.e. J12 is 
it can be verified With the inverse transformation, 4 = 

Relation to supersymmetry. Define the new supergenerators 0' as 

0-= ( O  A- O) Q + = ( o  0 )  
0 A+ 

so that 
[A', A-] = 20" Q + = Q - = o  

and the Hamiltonian fl+ and its partner A- are 

io+, (3-> = 2% A=("+ ". 
0 H- 
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Note that 0’ are conserved quantities because [ 0*, R ]  = 0, where { , } and [ , 3 mean 
commutator and anticommutator. The corresponding potentials are then 

= 6’2 f f i l l ,  (9) 

Znrerpretarion. It is clear that the components +’ can be considered as the bosonic 
and fermionic components in this new representation corresponding to a new super- 
potential 6 which, with our choice, is simply -U’. From (6) we find 

v* = 4 U 2 U t 2  * 2( uf2+ UUII) .  (10) 

Denote the energy spectrum {E , , }  corresponding to v* and { E , , }  to V, = U’’ f U”. 
Obviously these two spectra are different because E, are not eigenvalues in the (+) 
representation except for special cases to be seen below. { E , , }  has a non-degenerate 
zero-energy ground state so that its Witten index Aw # 0. 

Examples. ( a )  Let u(x) be linear in the sense u ( x )  = 2 - l ” ~ ;  together with (10) the 
corresponding Hamiltonian in the + representation is: 

- 1 d2 
2 dX2 

H, = -- - + i [ x ’ r  11 

which can be associated with the problem of an electron moving in a magnetic field 
with a gyromagneticratio g = 2 (Gedenshtein and Krive 1983, Haymaker and Rau 1988). 

Consider now any potential u(x) and choose for c(x) the form 

c(x) = e-”(x’ coshn u(x) n > 0. (12) 

Then 

+’ - (cosh” U)-’ + I  -Coshn U 

i.e. +2 can be normalised but not Using (9) we obtain 

v* = nu”[n - ( n  7 1) sech’ u(x)] * nu” tanh u(x) 

which is fairly complicated in the general case. 

( b )  For the special case u(x) = x, n = 1, we find 

1 
1-2 sech’x 

which is precisely the case discussed in Kwong and Rosner (1986) where it has been 
shown that if one of the two potentials is constant, its partner must be an even and 
reflectionless potential (see also Alkhoury and Comtet (1984) where the quantity +,, 
should be N(cosh x)-’. 
- ( c )  For the more general case u ( x )  = ax,  n = 1 we may also define the potential v =  v - n 2 a 2 ;  then (a: parameter): 

- v* = -2a’ sech’ a x  (14) 

which can be regarded as an instantaneous soliton of the Kdv equation. Note also that 
here fi’= a tanh a x  which is the Posch-Teller case discussed by Cooper et al (1988). 
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From ( a ) ,  ( b )  and (c )  it is interesting to note that starting from the same type of 
linear potential but with different choices of c( x) ,  we have generated three apparently 
unrelated situations which have been formulated by conventional methods with three 
different superpotentials. 

Note also the relative simplicity of the solution of the Schrodinger equations for 
the zero-energy ground state which may be useful if we wish to extend to the factorisa- 
tion procedures (Sukumar 1985, Andrianov et af 1984) when u(x) has a complicated 
structure. Take, for example, the polynomial form 

N 
v ( x ) =  c a,x"' 

ni =O 

for which the Schrodinger equation with the corresponding potential vz is very difficult 
to solve while the zero-energy state wavefunction is simple $,, = AeFL', A being the 
normalisation constant. More precisely, assume now that all coefficients a, are zero 
except the one defined by aN = a n + ,  = [2 (n  + 1 ) ] - ' 1 2 .  The corresponding quantity v* is 

* f (2n + l)XZ" (16) p = X 4 n + Z  

which, up to a constant, is exactly the same potential considered in Khare (1985). 
Although it has a double-well structure with two degenerate minima (the instanton 
case) supersymmetry nevertheless remains unbroken (A,, f 0) because its ground state 
is well defined and normalisable 

Note that in this special case we have an identity between the two spectra {E,,} and 
{E,}  if N is odd (or n even). 

On the other hand, the present approach can also be extended to other types of 
potential. For example, in the Coulomb case, we have u(x) = - ( I +  1 )  log x, x[O, w ] ;  
the appropriate choice of c (x)  must be c(x)  = exp[-x/2(I+ l)] .  From (9) we obtain 

- L 1  1 v =i--+- 
* x2 x 4(1+1)' 

where L ,  have the characteristic forms L ,  = ( I  + 1)( I + 2 )  and L-  = I (  I + 1 )  which 
provide a supersymmetric interpretation of the 'accidental degeneracy' in hydrogenic 
atoms (Kostelecky and Nieto 1984, Haymaker 1986, Lahiri et a1 1989). 

From a more general point of view, the flexibility of the present approach can be 
appreciated according to the following remarks. 

( i )  As was stated above, many choices of c(x)  are obviously possible. Each choice 
leads to a modification of the ladder operator but always preserves the supersymmetry 
character. For example, let U(x) ,  k(x)  be arbitrary functions and y a parameter. If 
we choose for c(x) the form 

d 
c ( x ) = e x p  -u(x)- - dx + i - log k(x)  ( k(x)  dY 

then it can be verified easily that the 'ladder operator' A' defined in ( 7 )  is in exact 
agreement with the results from Lahiri et a1 (1988). 

(ii) It is clear that C(x) can be defined up to a constant A ,  which is a parameter 
of the first kind. For example, if we set c(x)+e*'c(x),  the spectrum {I?,,} will remain 
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unchanged. There is, however, a second kind of parameter A, which is directly related 
to $(x) and which can be used to define a family of isospectral potentials (Khare and 
Sukhatme 1989). From this point of view we may note the similarity between the role 
of the quantity c ' / c  of present work and the auxiliary function 4 ( x )  in this reference. 
For even superpotentials u ( x )  we have in fact obtained the same conclusions (unbroken 
symmetry) but the question of odd potentials still remains open. 

To summarise, we may conclude that with these few examples above, it will not 
be unreasonable to suggest that the present approach, with adequate choices of the 
function c ( x ) ,  can in fact provide a convenient method to generate a broad spectrum 
of physical situations which are related to supersymmetry. 
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